
yt Cheat Sheet

General Info
For everything yt please see http://yt-project.org.
Documentation
http://yt-project.org/doc/index.html. Need help?
Start here http://yt-project.org/doc/help/ and then
try the IRC chat room
http://yt-project.org/irc.html, or the mailing list
http://lists.spacepope.org/listinfo.cgi/yt-users-
spacepope.org.

Installing yt
The easiest way to install yt is to use the installation
script found on the yt homepage or the docs linked
above. If you already have python set up with numpy,
scipy, matplotlib, h5py, and cython, you can also use
pip install yt

Command Line yt
yt, and its convenience functions, are launched from a
command line prompt. Many commands have flags to
control behavior. Commands can be followed by --help
(e.g. yt render --help) for detailed help for that
command including a list of the available flags.
iyt— Load yt and IPython.
yt load dataset — Load a single dataset.
yt help — Print yt help information.
yt stats dataset — Print stats of a dataset.
yt update — Update yt to most recent version.
yt update --all — Update yt and dependencies to most
recent version.
yt version — yt installation information.
yt notebook — Run the IPython notebook server.
yt upload image image.png — Upload PNG image to
imgur.com.
yt upload notebook notebook.nb — Upload IPython
notebook to hub.yt-project.org.
yt plot dataset — Create a set of images.
yt render dataset — Create a simple volume rendering.
yt mapserver dataset — View a plot/projection in a
Gmaps-like interface.
yt pastebin text.out — Post text to the pastebin at
paste.yt-project.org.
yt pastebin grab identifier — Print content of pastebin
to STDOUT.
yt bugreport — Report a yt bug.
yt hop dataset — Run hop on a dataset.

yt Imports
In order to use yt, Python must load the relevant yt
modules into memory. The import commands are entered
in the Python/IPython shell or used as part of a script.
import yt — Load yt.
from yt.config import ytcfg — Used to set yt
configuration options. If used, must be called before
importing any other module.
from yt.analysis modules.halo finding.api import ∗

— Load halo finding modules. Other modules are loaded

in a similar way by swapping the emphasized text. See
the Analysis Modules section for a listing and short
descriptions of each.

YTArray
Simulation data in yt is returned as a YTArray. YTArray
is a numpy array that has unit data attached to it and
can automatically handle unit conversions and detect
unit errors. Just like a numpy array, YTArray provides a
wealth of built-in functions to calculate properties of the
data in the array. Here is a very brief list of some useful
ones.
v = a.in cgs() — Return the array in CGS units
v = a.in units(’Msun/pc**3’) — Return the array in
solar masses per cubic parsec
v = a.max(), a.min() — Return maximum, minimum
of a.
index = a.argmax(), a.argmin() — Return index of
max, min value of a.
v = a[index] — Select a single value from a at location
index.
b = a[i:j] — Select the slice of values from a between
locations i to j-1 saved to a new Numpy array b with
length j-i.
sel = (a > const) — Create a new boolean Numpy
array sel, of the same shape as a, that marks which
values of a > const. Other operators (e.g. <, !=, %)
work as well.
b = a[sel] — Create a new Numpy array b made up of
elements from a that correspond to elements of sel that
are True. In the above example b would be all elements
of a that are greater than const.
a.write hdf5(filename.h5) — Save a to the hdf5 file
filename.h5.

IPython Tips
These tips work if IPython has been loaded, typically
either by invoking iyt or yt load on the command line,
or using the IPython notebook (yt notebook). Tab
complete — IPython will attempt to auto-complete a
variable or function name when the Tab key is pressed,
e.g. HaloFi–Tab would auto-complete to HaloFinder.
This also works with imports, e.g. from
numpy.random.–Tab would give you a list of random
functions (note the trailing period before hitting Tab).
?, ?? — Appending one or two question marks at the
end of any object gives you detailed information about it,
e.g. variable name?.
Below a few IPython “magics” are listed, which are
IPython-specific shortcut commands.
%paste — Paste content from the system clipboard into
the IPython shell.
%hist — Print recent command history.
%quickref — Print IPython quick reference.
%pdb — Automatically enter the Python debugger at an
exception.
%debug — Drop into a debugger at the location of the
last unhandled exception.
%time, %timeit — Find running time of expressions for
benchmarking.

%lsmagic — List all available IPython magics. Hint: ?
works with magics.
Please see http://ipython.org/documentation.html for
the full IPython documentation.

Load and Access Data

The first step in using yt is to reference a simulation
snapshot. After that, simulation data is generally
accessed in yt using Data Containers which are Python
objects that define a region of simulation space from
which data should be selected. ds = yt.load(dataset)
— Reference a single snapshot.
dd = ds.all data() — Select the entire volume.
a = dd[field name] — Copies the contents of field into
the YTArray a. Similarly for other data containers.
ds.field list — A list of available fields in the
snapshot.
ds.derived field list — A list of available derived
fields in the snapshot.
val, loc = ds.find max("Density") — Find the value
of the maximum of the field Density and its location.
sp = ds.sphere(cen,radius) — Create a spherical data
container. cen may be a coordinate, or “max” which
centers on the max density point. radius may be a float
in code units or a tuple of (length, unit).
re = ds.region(cen, left edge, right edge) — Create a
rectilinear data container. cen is required but not used.
left and right edge are coordinate values that define the
region.
di = ds.disk(cen, normal, radius, height) — Create a
cylindrical data container centered at cen along the
direction set by normal,with total length 2×height and
with radius radius.
ds.save object(sp, “sp for later”) — Save an object
(sp) for later use.
sp = ds.load object(“sp for later”) — Recover a saved
object.

Defining New Fields

yt expects on-disk fields, fields generated on-demand and
in-memory. Field can either be created before a dataset is
loaded using add field: def metal mass(field,data)

return data["metallicity"]*data["cell mass"]
add field("metal mass", units=’g’,
function= metal mass)
Or added to an existing dataset using ds.add field:
ds.add field("metal mass", units=’g’,
function= metal mass)

Slices and Projections

slc = yt.SlicePlot(ds, axis or normal vector, field,
center=, width=, weight field=, additional parameters)
— Make a slice plot perpendicular to axis (specified via
’x’, ’y’, or ’z’) or a normal vector for an off-axis slice of
field weighted by weight field at (code-units) center with
width in code units or a (value, unit) tuple. Hint: try
yt.SlicePlot? in IPython to see additional parameters.



slc.save(file prefix) — Save the slice to a png with
name prefix file prefix. .save() works similarly for the
commands below.
prj = yt.ProjectionPlot(ds, axis, field, addit.
params) — Make a projection.
prj = yt.OffAxisProjectionPlot(ds, normal, fields,
center=, width=, depth=,north vector=,weight field=)
—Make an off axis projection. Note this takes an array of
fields.

Plot Annotations

Plot callbacks are functions itemized in a registry that is
attached to every plot object. They can be accessed and
then called like prj.annotate velocity(factor=16,
normalize=False). Most callbacks also accept a plot args
dict that is fed to matplotlib annotator.
velocity(factor=,scale=,scale units=, normalize=) —
Uses field ”x-velocity” to draw quivers
magnetic field(factor=,scale=,scale units=,
normalize=) — Uses field ”Bx” to draw quivers
quiver(field x,field y,factor=,scale=,scale units=,
normalize=)
contour(field=,ncont=,factor=,clim=,take log=,
additional parameters) —Plots a number of contours
ncont to interpolate field optionally using take log, upper
and lower contourlimits and factor number of points in
the interpolation.
grids(alpha=, draw ids=, periodic=, min level=,
max level=) —Add grid boundaries.
streamlines(field x,field y,factor=,density=)
clumps(clumplist) — Generate clumplist using the clump
finder and plot.
arrow(pos, code size) Add an arrow at a position.
point(pos, text) — Add text at a position.
marker(pos, marker=) — Add a matplotlib-defined
marker at a position.
sphere(center, radius, text=) — Draw a circle and
append text.
hop circles(hop output, max number=, annotate=,
min size=, max size=, font size=, print halo size=,
fixed radius=, min mass=, print halo mass=, width=)

— Draw a halo, printing it’s ID, mass, clipping halos
depending on number of particles (size) and optionally
fixing the drawn circle radius to be constant for all halos.
hop particles(hop output,max number=,p size=,
min size,alpha=) — Draw particle positions for member
halos with a certain number of pixels per particle.
particles(width,p size=,col=, marker=, stride=,
ptype=, stars only=, dm only=, minimum mass=,
alpha=) — Draw particles of p size pixels in a slab of
width with color using a matplotlib marker plotting only
every stride number of particles.
title(text)

The ∼/.yt/ Directory

yt will automatically check for configuration files in a
special directory ($HOME/.yt/) in the user’s home
directory.

The config file — Settings that control runtime behavior.
The my plugins.py file — Add functions, derived fields,
constants, or other commonly-used Python code to yt.

Analysis Modules

The import name for each module is listed at the end of
each description (see yt Imports).

Absorption Spectrum — (absorption spectrum).
Clump Finder — Find clumps defined by density
thresholds (level sets).
Halo Finding — Locate halos of dark matter particles
(halo finding).
Light Cone Generator — Stitch datasets together to
perform analysis over cosmological volumes.
Light Ray Generator — Analyze the path of light rays.
Rockstar Halo Finding — Locate halos of dark matter
using the Rockstar halo finder (halo finding.rockstar).
Star Particle Analysis — Analyze star formation
history and assemble spectra (star analysis).
Sunrise Exporter — Export data to the sunrise
visualization format (sunrise export).

Parallel Analysis
Nearly all of yt is parallelized using MPI. The mpi4py
package must be installed for parallelism in yt. To install
pip install mpi4py on the command line usually works.
Execute python in parallel similar to this:
mpirun -n 12 python script.py
The file script.py must call the
yt.enable parallelism() to turn on yt’s parallelism. If
this doesn’t happen, all cores will execute the same serial
yt script. This command may differ for each system on
which you use yt; please consult the system
documentation for details on how to run parallel
applications.
parallel objects() — A way to parallelize analysis over
objects (such as halos or clumps).

Mercurial
Please see http://mercurial.selenic.com/ for the full
Mercurial documentation.
hg clone https://bitbucket.org/yt analysis/yt —
Clone a copy of yt.
hg status — Files changed in working directory.
hg diff — Print diff of all changed files in working
directory.
hg diff -rRevX -rRevY — Print diff of all changes
between revision RevX and RevY.
hg log — History of changes.
hg cat -rRevX file — Print the contents of file from
revision RevX.
hg heads — Print all the current heads.
hg revert -rRevX file — Revert file to revision RevX.
On-disk changed version is moved to file.orig.
hg commit — Commit changes to repository.
hg push — Push changes to default remote repository.
hg pull — Pull changes from default remote repository.
hg serve — Launch a webserver on the local machine to
examine the repository in a web browser.

FAQ
slc.set log(’field’, False) — When plotting field,
use linear scaling instead of log scaling.


