
yt Cheat Sheet

General Info
For everything yt please see http://yt-project.org.
Documentation
http://yt-project.org/doc/index.html. Need help?
Start here http://yt-project.org/doc/help/ and then
try the IRC chat room
http://yt-project.org/irc.html, or the mailing list
http://lists.spacepope.org/listinfo.cgi/
yt-users-spacepope.org. Installing yt: The easiest
way to install yt is to use the installation script found on
the yt homepage or the docs linked above.

Command Line yt
yt, and its convenience functions, are launched from a
command line prompt. Many commands have flags to
control behavior. Commands can be followed by --help
(e.g. yt render --help) for detailed help for that
command including a list of the available flags.
iyt— Load yt and IPython.
yt load dataset — Load a single dataset.
yt help — Print yt help information.
yt stats dataset — Print stats of a dataset.
yt update — Update yt to most recent version.
yt update --all — Update yt and dependencies to most
recent version.
yt instinfo — yt installation information.
yt notebook — Run the IPython notebook server.
yt serve (dataset) — Run yt-specific web GUI (dataset
is optional).
yt upload image image.png — Upload PNG image to
imgur.com.
yt upload notebook notebook.nb — Upload IPython
notebook to hub.yt-project.org.
yt plot dataset — Create a set of images.
yt render dataset — Create a simple volume rendering.
yt mapserver dataset — View a plot/projection in a
Gmaps-like interface.
yt pastebin text.out — Post text to the pastebin at
paste.yt-project.org.
yt pastebin grab identifier — Print content of pastebin
to STDOUT.
yt hub register — Register with hub.yt-project.org.
yt hub submit — Submit hg repo to hub.yt-project.org.
yt bootstrap dev — Bootstrap a yt development
environment.
yt bugreport — Report a yt bug.
yt hop dataset — Run hop on a dataset.
yt rpdb — Connect to running rpd session.

yt Imports
In order to use yt, Python must load the relevant yt
modules into memory. The import commands are entered
in the Python/IPython shell or used as part of a script.
from yt.mods import ∗ — Load base yt modules.
from yt.config import ytcfg — Used to set yt
configuration options. If used, must be called before
importing any other module.

from yt.analysis modules.api import ∗ — Load all yt
analysis modules.
from yt.analysis modules.halo finding.api import ∗
— Load halo finding modules. Other modules are loaded
in a similar way by swapping the emphasized text. See
the Analysis Modules section for a listing and short
descriptions of each.

Numpy Arrays
Simulation data in yt is returned in Numpy arrays. The
Numpy package provides a wealth of built-in functions
that operate on Numpy arrays. Here is a very brief list of
some useful ones. Please see
http://docs.scipy.org/doc/numpy/reference/ for the
full numpy documentation.
v = a.max(), a.min() — Return maximum, minimum
of a.
index = a.argmax(), a.argmin() — Return index of
max, min value of a.
v = a[index] — Select a single value from a at location
index.
b = a[i:j] — Select the slice of values from a between
locations i to j-1 saved to a new Numpy array b with
length j-i.
sel = (a > const) — Create a new boolean Numpy
array sel, of the same shape as a, that marks which
values of a > const. Other operators (e.g. <, !=, %)
work as well.
b = a[sel] — Create a new Numpy array b made up of
elements from a that correspond to elements of sel that
are True. In the above example b would be all elements
of a that are greater than const.
a.dump(filename.dat) — Save a to the binary file
filename.dat.
a = np.load(filename.dat) — Load the contents of
filename.dat into a.

IPython Tips
These tips work if IPython has been loaded, typically
either by invoking iyt or yt load on the command line,
or using the IPython notebook (yt notebook). Tab
complete — IPython will attempt to auto-complete a
variable or function name when the Tab key is pressed,
e.g. HaloFi–Tab would auto-complete to HaloFinder.
This also works with imports, e.g. from
numpy.random.–Tab would give you a list of random
functions (note the trailing period before hitting Tab).
?, ?? — Appending one or two question marks at the
end of any object gives you detailed information about it,
e.g. variable name?.
Below a few IPython “magics” are listed, which are
IPython-specific shortcut commands.
%paste — Paste content from the system clipboard into
the IPython shell.
%hist — Print recent command history.
%quickref — Print IPython quick reference.
%pdb — Automatically enter the Python debugger at an
exception.
%time, %timeit — Find running time of expressions for
benchmarking.

%lsmagic — List all available IPython magics. Hint: ?
works with magics.
Please see http://ipython.org/documentation.html for
the full IPython documentation.

Load and Access Data
The first step in using yt is to reference a simulation
snapshot. After that, simulation data is generally
accessed in yt using Data Containers which are Python
objects that define a region of simulation space from
which data should be selected. pf = load(dataset) —
Reference a single snapshot.
dd = pf.h.all data() — Select the entire volume.
a = dd[field name] — Saves the contents of field into the
numpy array a. Similarly for other data containers.
pf.h.field list — A list of available fields in the
snapshot.
pf.h.derived field list — A list of available derived
fields in the snapshot.
val, loc = pf.h.find max("Density") — Find the
value of the maximum of the field Density and its
location.
sp = pf.h.sphere(cen,radius) — Create a spherical
data container. cen may be a coordinate, or “max” which
centers on the max density point. radius may be a float
in code units or a tuple of (length, unit).
re = pf.h.region(cen, left edge, right edge) — Create
a rectilinear data container. cen is required but not used.
left and right edge are coordinate values that define the
region.
di = pf.h.disk(cen, normal, radius, height) —
Create a cylindrical data container centered at cen along
the direction set by normal,with total length 2×height
and with radius radius.
bl = pf.h.boolean(constructor) — Create a boolean
data container. constructor is a list of pre-defined
non-boolean data containers with nested boolean logic
using the “AND”, “NOT”, or “OR” operators. E.g.
constructor= [sp, “NOT”, (di, “OR”, re)] gives a volume
defined by sp minus the patches covered by di and re.
pf.h.save object(sp, “sp for later”) — Save an object
(sp) for later use.
sp = pf.h.load object(“sp for later”) — Recover a
saved object.

Defining New Fields & Quantities
yt expects on-disk fields, fields generated on-demand and
in-memory. Quantities reduce a field (e.g. ”Density”)
defined over an object (e.g. ”sphere”) to get a single
value (e.g. ”Mass”).
def MetalMassMsun(field,data)

return
data["Metallicity"]*data["CellMassMsun"]
add field("MetalMassMsun",function= MetalMassMsun)
Define a new quantity; note the first function operates on
grids and data objects and the second on the results of
the first.
def TotalMass(data):

baryon mass = data["CellMassMsun"].sum()

http://yt-project.org
http://yt-project.org/doc/index.html
http://yt-project.org/doc/help/
http://yt-project.org/irc.html
http://lists.spacepope.org/listinfo.cgi/yt-users-spacepope.org
http://lists.spacepope.org/listinfo.cgi/yt-users-spacepope.org
http://docs.scipy.org/doc/numpy/reference/
http://ipython.org/documentation.html

particle mass = data["ParticleMassMsun"].sum()
return baryon mass, particle mass

def combTotalMass(data, baryon mass,
particle mass):

return baryon mass.sum() + particle mass.sum()
add quantity("TotalMass", function= TotalMass,

combine function= combTotalMass, n ret = 2)

Slices and Projections
slc = SlicePlot(pf, axis, field, center=, width=,
weight field=, additional parameters) — Make a slice
plot perpendicular to axis of field weighted by weight field
at (code-units) center with width in code units or a
(value, unit) tuple. Hint: try SlicePlot? in IPython to see
additional parameters.
slc.save(file prefix) — Save the slice to a png with
name prefix file prefix. .save() works similarly for the
commands below.
prj = ProjectionPlot(pf, axis, field, addit. params)
— Make a projection.
prj = OffAxisSlicePlot(pf, normal, fields, center=,
width=, depth=,north vector=,weight field=) —Make
an off-axis slice. Note this takes an array of fields.
prj = OffAxisProjectionPlot(pf, normal, fields,
center=, width=, depth=,north vector=,weight field=)
—Make an off axis projection. Note this takes an array of
fields.

Plot Annotations
Plot callbacks are functions itemized in a registry that is
attached to every plot object. They can be accessed and
then called like prj.annotate velocity(factor=16,
normalize=False). Most callbacks also accept a plot args
dict that is fed to matplotlib annotator.
velocity(factor=,scale=,scale units=, normalize=) —
Uses field ”x-velocity” to draw quivers
magnetic field(factor=,scale=,scale units=,
normalize=) — Uses field ”Bx” to draw quivers
quiver(field x,field y,factor=,scale=,scale units=,
normalize=)
contour(field=,ncont=,factor=,clim=,take log=,
additional parameters) —Plots a number of contours
ncont to interpolate field optionally using take log, upper
and lower contourlimits and factor number of points in
the interpolation.
grids(alpha=, draw ids=, periodic=, min level=,
max level=) —Add grid boundaries.
streamlines(field x,field y,factor=,density=)
clumps(clumplist) — Generate clumplist using the clump
finder and plot.
arrow(pos, code size) Add an arrow at a position.
point(pos, text) — Add text at a position.

marker(pos, marker=) — Add a matplotlib-defined
marker at a position.
sphere(center, radius, text=) — Draw a circle and
append text.
hop circles(hop output, max number=, annotate=,
min size=, max size=, font size=, print halo size=,
fixed radius=, min mass=, print halo mass=, width=)
— Draw a halo, printing it’s ID, mass, clipping halos
depending on number of particles (size) and optionally
fixing the drawn circle radius to be constant for all halos.
hop particles(hop output,max number=,p size=,
min size,alpha=) — Draw particle positions for member
halos with a certain number of pixels per particle.
particles(width,p size=,col=, marker=, stride=,
ptype=, stars only=, dm only=, minimum mass=,
alpha=) — Draw particles of p size pixels in a slab of
width with color using a matplotlib marker plotting only
every stride number of particles.
title(text)

The ∼/.yt/ Directory
yt will automatically check for configuration files in a
special directory ($HOME/.yt/) in the user’s home
directory.
The config file — Settings that control runtime behavior.
The my plugins.py file — Add functions, derived fields,
constants, or other commonly-used Python code to yt.

Analysis Modules
The import name for each module is listed at the end of
each description (see yt Imports).
Absorption Spectrum — (absorption spectrum).
Clump Finder — Find clumps defined by density
thresholds (level sets).
Coordinate Transformation —
(coordinate transformation).
Halo Finding — Locate halos of dark matter particles
(halo finding).
Halo Mass Function — Find halo mass functions from
data and from theory (halo mass function).
Halo Profiling — Profile and project multiple halos
(halo profiler).
Halo Merger Tree — Create a database of halo mergers
(halo merger tree).
Light Cone Generator — Stitch datasets together to
perform analysis over cosmological volumes.
Light Ray Generator — Analyze the path of light rays.
Radial Column Density — Calculate column densities
around a point (radial column density).
Rockstar Halo Finding — Locate halos of dark matter
using the Rockstar halo finder (halo finding.rockstar).

Star Particle Analysis — Analyze star formation
history and assemble spectra (star analysis).
Sunrise Exporter — Export data to the sunrise
visualization format (sunrise export).
Two Point Functions — Two point correlations
(two point functions).

Parallel Analysis
Nearly all of yt is parallelized using MPI. The mpi4py
package must be installed for parallelism in yt. To install
pip install mpi4py on the command line usually works.
Execute python in parallel similar to this:
mpirun -n 12 python script.py –parallel
This command may differ for each system on which you
use yt; please consult the system documentation for
details on how to run parallel applications.
from yt.pmods import * — Load yt faster when in
parallel. This replaces the usual from yt.mods import *.
parallel objects() — A way to parallelize analysis over
objects (such as halos or clumps).

Pre-Installed Versions
yt is pre-installed on several supercomputer systems.
NICS Kraken — module load yt

Mercurial
Please see http://mercurial.selenic.com/ for the full
Mercurial documentation.
hg clone https://bitbucket.org/yt analysis/yt —
Clone a copy of yt.
hg status — Files changed in working directory.
hg diff — Print diff of all changed files in working
directory.
hg diff -rRevX -rRevY — Print diff of all changes
between revision RevX and RevY.
hg log — History of changes.
hg cat -rRevX file — Print the contents of file from
revision RevX.
hg heads — Print all the current heads.
hg revert -rRevX file — Revert file to revision RevX.
On-disk changed version is moved to file.orig.
hg commit — Commit changes to repository.
hg push — Push changes to default remote repository.
hg pull — Pull changes from default remote repository.
hg serve — Launch a webserver on the local machine to
examine the repository in a web browser.

FAQ
pf.field info[‘field’].take log = False — When
plotting field, do not take log. Must enter pf.h before
this command.

http://mercurial.selenic.com/

